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Mono-monostatic 
Bodies: The Answer 
to Arnold’s Question
P. L. VÁRKONYI AND G. DOMOKOS

A s V. I. Arnol’d conjectured; convex, homogeneous
bodies with less than four equilibria (also called
mono-monostatic bodies) may exist. Not only did

his conjecture turn out to be true, the newly discovered ob-
jects show various interesting features. Our goal is to give
an overview of these findings based on [7], as well as to
present some new results. We will point out that mono-
monostatic bodies are neither flat, nor thin, they are not sim-
ilar to typical objects with more equilibria, and they are hard
to approximate by polyhedra. Despite these “negative” traits,
there seems to be an indication that these forms appear in
Nature due to their special mechanical properties.

Do Mono-monostatic Bodies Exist?
In his recent book [11] V. I. Arnold presented a rich col-
lection of problems sampled from his famous Moscow sem-
inars. As Tabachnikov points out in his lively review [12],
a central theme is geometrical and topological generaliza-
tion of the classical Four-Vertex Theorem [2], stating that a
plane curve has at least four extrema of curvature. The con-
dition that some integer is at least four appears in numer-
ous different problems in the book, in areas ranging from
optics to mechanics. Being one of Arnold’s long-term re-
search interests, this was the central theme to his plenary
lecture in 1995, Hamburg, at the International Conference
on Industrial and Applied Mathematics, presented to more
than 2000 mathematicians (see the accompanying article).
The number of equilibria of homogeneous, rigid bodies pre-
sents a big temptation to believe in yet another emerging
example of being at least four (in fact, the planar case was
proven to be an example [1]). Arnold resisted and conjec-
tured that, counter to everyday intuition and experience,
the three-dimensional case might be an exception. In other
words, he suggested that convex, homogeneous bodies
with fewer than four equilibria (also called mono-mono-

static) may exist. As often before, his conjecture proved not
only to be correct but to open up an interesting avenue of
mathematical thought coupled with physical and biological
applications, which we explore below.

Why Are They Special?
We consider bodies resting on a horizontal surface in the
presence of uniform gravity. Such bodies with just one sta-
ble equilibrium are called monostatic and they appear to
be of special interest. It is easy to construct a monostatic
body, such as a popular children’s toy called “Comeback
Kid” (Figure 1A). However, if we look for homogeneous,
convex monostatic bodies, the task is much more difficult.
In fact, in the 2D case one can prove [1] that among pla-
nar (slab-like) objects rolling along their circumference no
monostatic bodies exist. (This statement is equivalent to the
famous Four-Vertex Theorem [2] in differential geometry.)

The proof for the 2D case is indirect and runs as fol-
lows. Consider a convex, homogeneous planar “body” B
and a polar coordinate system with origin at the center of
gravity of B. Let the continuous function R(�) denote the
boundary of B. As demonstrated in [1], non-degenerate sta-
ble/unstable equilibria of the body correspond to local min-
ima/maxima of R(�). Assume that R(�) has only one local
maximum and one local minimum. In this case there ex-
ists exactly one value � � �0 for which R(�0) � R(�0 � �);
moreover, R(�) � R(�0) if � � � � �0 � 0, and R(�) �
R(�0) if �� � �-�0 � 0 (see Figure 2A). The straight line
� � �0 (identical to � � �0 � �) passing through the ori-
gin O cuts B into a “thin” (R(�) � R(�0) and a “thick”
(R(�) � R(�0) part. This implies that O can not be the cen-
ter of gravity, i.e., it contradicts the initial assumption.

Not surprisingly, the 3D case is more complex. Although
one can construct a homogeneous, convex monostatic body
(Figure 1B), the task is far less trivial if we look for a mono-
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static polyhedron with a minimal number of faces. Con-
way and Guy [3] constructed such a polyhedron with 19
faces (similar to the body in Figure 1B); it is still believed
that this is the minimal number. It was shown by Heppes
[6] that no homogeneous, monostatic tetrahedron exists.
However, Dawson [4] showed that homogeneous, mono-
static simplices exist in d � 7 dimensions. More recently,
Dawson and Finbow [5] showed the existence of mono-
static tetrahedra—but with inhomogeneous mass density.

One can construct a rather transparent classification
scheme for bodies with exclusively non-degenerate balance
points, based on the number and type of their equilibria.
In 2D, stable and unstable equilibria always occur in pairs,
so we say that a body belongs to class {1} (i � 0) if it has
exactly S � i stable (and thus, U � i unstable) equilibria. As
we showed above, class {1} is empty. In 3D we appeal to
the Poincaré-Hopf Theorem [8], stating for convex bodies
that S � U � D � 2, S,U,D denoting the number of local
minima, maxima, and saddles of the body’s potential en-

ergy; so class {i, j } (i, j � 0) contains all bodies with S � i
stable, U � j “unstable,” and D � i � j � 2 saddle-type equi-
libria.

Monostatic bodies are in classes {1, j }; we will refer to
the even more special class {1,1} with just one stable and
one unstable equilibrium as “mono-monostatic.” While in
2D being monostatic implies being mono-monostatic (and
vice versa), the 3D case is more complicated: a mono-
static body could have, in principle, any number of unsta-
ble equilibria (e.g., the body in Figure 1B belongs to class
{1,2} and has four equilibria altogether, as pointed out by
Arnold, see story). Arnold’s conjecture was that class {1,1}
is not empty, i.e., that homogeneous, convex mono-mono-
static bodies existed. Before we outline the construction of
such an object, we want to highlight its very special rela-
tion to other convex bodies.
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Figure 1. A. Children’s toy with one stable and one unstable
equilibrium inhomogeneous, mono-monostatic body), also
called the “comeback kid.” B. Convex, homogeneous solid
body with one stable equilibrium (monostatic body). In both
plots, S, D, and U denote points of the surface corresponding
to stable, saddle-type, and unstable equilibria of the bodies,
respectively.

Figure 2. A. Example of a convex, homogeneous, planar body
bounded by R(�) (polar distance from the origin O). Assum-
ing R(�) has only two local extrema, the body can be cut to
a “thin” and a “thick” half by the line � � �0. Its center of
gravity is on the “thick” side, in particular, it cannot coincide
with O. B. 3D body (dashed line) separated into a “thin” and
a “thick” part by a tennis ball-like space curve C (dotted line)
along which R � R0. Continuous line shows a sphere of radius
R0, which also contains the curve C.



Intuitively it seems clear that by applying small, local
perturbations to a surface, one may produce additional lo-
cal maxima and minima (close to existing ones), similar to
the “egg of Columbus.” According to some accounts,
Christopher Columbus attended a dinner which a Spanish
gentleman had given in his honor. Columbus asked the
gentlemen in attendance to make an egg stand on one end.
After the gentlemen successively tried to and failed, they
stated that it was impossible. Columbus then placed the
egg’s small end on the table, breaking the shell a bit, so
that it could stand upright. Columbus then stated that it was
“the simplest thing in the world. Anybody can do it, after
he has been shown how!” In [7] we showed that in an anal-
ogous manner, one can add stable and unstable equilibria
one by one by taking away locally small portions of the
body. Apparently, the inverse is not possible, i.e., for a typ-
ical body one cannot decrease the number of equilibria via
small perturbations.

This result indicates the special status of mono-mono-
static bodies among other objects. For any given typical
mono-monostatic body, one can find bodies in an arbitrary
class {i, j } which have almost the same shape. On the other
hand, to any typical member of class {i, j }, (i, j � 1), one
can not find a mono-monostatic body which has almost the
same shape. This may explain why mono-monostatic bod-
ies do not occur often in Nature, also, why it is difficult to
visualize such a shape. Next we will demonstrate such an
object.

What Are They Like?
As in the planar case, a mono-monostatic 3D body can be
cut to a “thin” and a “thick” part by a closed curve on its
boundary, along which R(	,�) is constant. If this separatrix
curve happens to be planar, its existence leads to contra-
diction, similar to the 2D case. (If, for example, it is the
“equator” � � 0 and � � 0/� � 0 are the thick/thin halves,
the center of gravity should be on the upper (� � 0) side
of the origin). However, in case of a generic spatial sepa-
ratrix, the above argument no longer applies. In particular,
the curve can be similar to the ones on the surfaces of ten-
nis balls (Figure 2B). In this case the “upper” thick (“lower”
thin) part is partially below (above) the equator; thus it is
possible to have the center of gravity at the origin. Our
construction will be of this type. We define a suitable two-
parameter family of surfaces R(	,�,c,d) in the spherical co-
ordinate system (r,	,�) with ��/2 � � � �/2 and 0 
 	 

2�, or � � � �/2 and no 	 coordinate, while c � 0 and
0 � d � 1 are parameters. Conveniently, R can be decom-
posed in the following way:

R(	,�,c,d) � (1 � d) � 
R(	,�,c), (1)

where 
R denotes the type of deviation from the unit sphere.
“Thin”/”thick” parts of the body are characterized by nega-
tiveness/positiveness of 
R (i.e., the separatrix between the
thick and thin portions will be given by 
R � 0), while the
parameter d is a measure of how far the surface is from the
sphere. We will choose small values of d so as to make the
surface convex. Now we proceed to define 
R.

We will have the maximum/minimum points of 
R
(
R � �1) at the North/South Pole (� � ��/2). The shapes

of the thick and thin portions of the body are controlled
by the parameter c: for c �� 1 the separatrix will approach
the equator; for smaller values of c, the separatrix will be-
come similar to the curve on the tennis ball.

Consider the following smooth, one-parameter mapping
f (�,c): (��/2,�/2) � (��/2,�/2):

�e � 1 �. (2)

e1/c � 1

For large values of the parameter (c �� 1), this mapping
is almost the identity; however, if c is close to 0, there is
a large deviation from linearity. Based on (2), we define
the related maps

f1(�,c) � sin( f (�,c)) (3)

and

f2(�,c) � �f1(��,c). (4)

We will choose 
R so as to obtain 
R(�,	,c) � f2(�,c) if
	 � �/2 or 3�/2 (i.e., a big portion of these sections of the
body lie in the thick part, cf. Figure 2B) and 
R � f2 if 	 �
0 or � (the majority of these sections are in the thin part).
The function

a(	,�,c) � � (5)

where ��� � �/2

�
1

� 1 � tan2(	)

is used to construct 
R as a weighted average of f1 and f2
in the following way:


R(	,�,c) � � �. (6)

The choice of the function a guarantees, on the one hand,
the gradual transition from f1 to f2 if 	 is varied between 0
and �/2. On the other hand, it was chosen to result in the
desired shape of thick/thin halves of the body (Figure 2/B).
The function R defined by equations (1)–(6) is illustrated
in Figure 3 for intermediate values of c and d. For c ��
1, the constructed surface R � 1 � d
R is separated by the
� � 0 equator into two unequal halves: the upper (� � 0)
half is “thick” (R � 1) and the lower (� � 0) half is “thin”
(R � 1). By decreasing c, the line separating the “thick” and
“thin” portions becomes a space curve; thus the thicker por-
tion moves downward and the thinner portion upward. As
c approaches zero, the upper half of the body becomes
thin and the lower one becomes thick (cf. Figure 4.)

In [7] we proved analytically that there exist ranges for
c and d where the body is convex and the center of grav-
ity is at the origin, i.e. it belongs to class {1.1}. Numerical
studies suggest that d must be very small (d � 5 � 10�5) to
satisfy convexity together with the other restrictions, so the
created object is very similar to a sphere. (In the admitted
range of d, the other parameter is approximately c � 0.275.)

a � f1 � (1 � a) � f2 if ��� � �/2
1 if � � �/2

�1 if � � ��/2

cos2( f (�,c))
��
cos2( f (�,c))

cos2(	) � (1 � f12)
����
cos2(	)(1 � f12) � sin2(	) � (1 � f22)

� �
1
2

�

��
�

�

c
� � �

2
1
c
��

f (�,c) � � �
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What Are They Not Like?
Intuitively, it appears that mono-monostatic bodies can be
neither very flat nor very thin; the former shape would
have at least two stable equilibria; the latter, at least two
unstable equilibria. To make this intuition more exact, we
define the flatness F and thinness T of a body. Draw a
closed curve c on the surface, traced by the position vec-
tor R(s), s � [0,1] from the center of gravity O. Pick two
points Pi (i � 1, 2) on opposite sides of c, with position vec-
tors Ri (i � 1, 2), respectively. We define the flatness and
thinness as

F � sup
�c,P1,P2

� �, T � sup
�c,P1,P2

� �.

Although F and T are hard to compute for a general case,
it is easy to give both a problem-specific and a general
lower bound. For the latter, we have

F,T � 1, (7)

since F � T � 1 can be always obtained by shrinking the
curve c to a single point. For “simple” objects F and T can
be determined, and the values agree fairly well with intu-
ition in Table 1.

min
i

(Ri)

max
s

(R(s))

min
s

(R(s))

max
i

(Ri)

Now we show that F and T are related to the number S of
stable and U of unstable equilibria by

LEMMA 1: (a) F � 1 if and only if S � 1 and
(b) T � 1 if and only if U � 1.

We only prove (a); the proof of (b) runs analogously.
If S � 1, then there exists one global minimum for the

radius R and at least one additional (local) minimum. Se-
lect c as a closed, R � R0 � constant curve, circling the lo-
cal minimum very closely. Select the points P1 and P2 co-
inciding with global and local minima, respectively. Now
we have R1 
 R2 � R0 and min(R(s)) � R0, max(Ri) � R2,
so S � 1 implies F � 1.

If S � 1, then R has only one minimum, so it assumes
only values greater than or equal to min(R(s)) on one side
of the curve c, so F 
 1, but due to (7), we have F � 1.
Q.e.d.

Lemma 1 confirms our initial intuition that mono-mono-
static bodies can be neither flat, nor thin. In fact, they have
simultaneously minimal flatness and minimal thinness;
moreover, they are the only non-degenerate bodies having
this property.

Another interesting though somewhat “negative” feature
of mono-monostatic bodies is the apparent lack of any sim-
ple polyhedral approximation. As mentioned before, the ex-
istence of monostatic polyhedra with minimal number of
faces has been investigated [3],[4],[5],[6]. One may general-
ize this to the existence of polyhedra in class {i, j }, with
minimal number of faces. Intuitively it appears evident that
polyhedra exist in each class: if we construct a sufficiently
fine triangulation on the surface of a smooth body in class
{i, j } with vertices at unstable equilibria, edges at saddles
and faces at stable equilibria; then the resulting polyhedron
may—at sufficiently high mesh density and appropriate
mesh ratios—“inherit” the class of the approximated smooth
body. It also appears that if the topological inequalities 2i �
j � 4 and 2j � i � 4 are valid, then we can have “minimal”
polyhedra, where the number of stable equilibria equals
the number of faces, the number of unstable equilibria
equals the number of vertices, and the number of saddles
equals the number of edges. Much more puzzling appear
to be the polyhedra in classes not satisfying the above topo-
logical inequalities: a special case of these polyhedra are
monostatic ones; however, many other types belong here
as well. In particular, it would be of interest to know the
minimal number of faces of a polyhedron in class {1,1}. We
can imagine such a polyhedron as an approximation of a
smooth mono-monostatic body. Since the latter are close

4 THE MATHEMATICAL INTELLIGENCER 

Figure 3. Plot of the body if c � d � 1/2

Figure 4. A. Side view of the body if c �� 1 (and d � 1/3).
Note that 
R � 0 if � � 0 and 
R � 0 if � � 0. B. Spatial view
if c �� 1. Here, 
R � 0 typically for � � 0 and vice versa.

Table 1. The flatness and thinness of some “simple” objects

Body Flatness F Thinness T

Sphere 1 1

Regular tetrahedron �3 �3

Cube �2 �(3/2)

Octahedron �(3/2) �2

Cylinder with radius r, height 2 h, z/h z/r
z � �(r2 � h2)

Ellipsoid with axes a � b � c b/a c/b

➲T1 



to the sphere (they are neither flat nor thin), the number
of equilibria is particularly sensitive to perturbations, so the
minimal number of faces of a mono-monostatic polyhedron
may be a very large number.

Mono-monostatic Bodies do Exist
Arnold’s conjecture proved to be correct: there exist ho-
mogeneous, convex bodies with just two equilibria; we
called these objects mono-monostatic.

Based on the results presented so far, one must get the
impression that mono-monostatic bodies are hiding—that
they are hard to visualize, hard to describe, and hard to
identify. In particular, we showed that their form is not sim-
ilar to any typical representative of any other equilibrium
class. We also showed that they are neither flat, nor thin;
in fact, they are the only non-degenerate objects having si-
multaneously minimal flatness and thinness. Imagining their
polyhedral approximation seems to be a futile effort as well:
the minimal number of faces for mono-monostatic polyhe-
dra might be very large. The extreme physical fragility of
these forms (i.e., their sensitivity to local perturbations due
to abrasion) was also confirmed by statistical experiments
on pebbles (reported in [7]); in a sample of 2000 pebbles
not a single mono-monostatic object could be identified.
Apparently, mono-monostatic bodies escape everyday hu-
man intuition.

They did not escape Arnold’s intuition. Neither does Na-
ture ignore these mysterious objects: being monostatic can
be a life-saving property for land animals with a hard shell,
such as beetles and turtles. In fact, the “righting response”
(their ability to turn back when placed upside down) of
these animals is often regarded as a measure of their fit-
ness ([9],[10]). Although the example presented above un-
der “Why Are They Special,” proved to be practically in-
distinguishable from the sphere, rather different forms are
also included in the mono-monostatic class. In particular,
we identified one of these forms, which not only shows

substantial deviation from the sphere, but also displays re-
markable similarity to some turtles and beetles. We built
the object by using 3D printing technology, and in Figure
5 it can be visually compared to an Indian Star Tortoise
(Geochelone elegans).

Needless to say, the analogy is incomplete: turtles are
neither homogeneous nor mono-monostatic. (They do not
need to be exactly mono-monostatic; righting is assisted dy-
namically by the motion of the limbs.) On the other hand,
being that close to a mono-monostatic form is probably not
just a coincidence; as we indicated before, such forms are
unlikely to be found by chance, either by us or by Evolu-
tion itself.
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Figure 5. Mono-monostatic body and Indian Star Tortoise
(Geochelone elegans).
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QU1
Give position of line starting with “where.”


